where C > 1. For certain fuels we may take C = =, and then Eq. (2) simplifies; the terms containing y,
vanish,

By way of example, Table 1 gives the approximation coefficients for O,— H, fuel and four values of the
excess coefficient of the oxidizing agent. The quantities in this table were determined by the well-known
method employed for the analytical representation of empirical data [6]. Inthe present example C =,

The results of our determination of £n for oxygen— hydrogen fuel with o =1 and ry/rap =10 by means
of Eq. (2) and also by numerical infegration of the problem are presented in Fig. 1. These data, together
with the results of analogous caleulations carried out for py = 0.5-25 MN/m?, rop = 2,5-125) 107 mand 1,/
Ter = 3~15.in the case of fuels containing hydrogen, carbon, nitrogen, oxygen, and fluorine, show that the
maximum error inthe determination of losses due to the lack of chemical equilibrium in the flow through the
nozzle by means of the proposed approximate equation equals £0.002, Such an error in £y introduces an.error
not exceeding 0.2% into the determination of the specific momentum.

NOTATION

&n, loss coefficient of the specific momentum due to the lack of chemical equilibrium in the flow; rep,
radius of critical nozzle cross section; rg,, radius of nozzle outlet section; pyg, flow retardation pressure;
py, Dormal pressure; h, relaxation coefficient; £, m, n, s, C, dimensionless coefficients; «, excess co-
efficient of oxidizing agent.
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COUPLED HEAT TRANSFER BETWEEN FLUID FILM
AND SOLID WALL

L. P. Kholpanov, T. B. Babak, UDC 536.242
V. N. Babak, V. A. Malyusov,
and N, M. Zhavoronkov

A numerical algorithm is proposed for solution of the coupled problem of convective heat trans-
fer. The method was used to study two-phase heat transfer between a solid wall and a laminarly
flowing fluid film for a linear temperature profile at the outer surface of the wall. A computa-
tional formula is proposed for the dimensionless Nusselt number,

In studying heat transfer in a film flowing gravitationally along a wall, the temperature at the solid-fluid-
film interface is usually assumed known and equal to a given temperature at the outer surface of the wall, This
condition is satisfied in the extremely idealized case of a wall with infinifely large thermal conductivity. How-
ever, the coefficients of thermal conductivity for several polymer materials such as Teflon and vinyl are of the
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Fig. 1. Dependence of dimensionless Nusselt number on %
for various values of the parameter P: 1) log P = —w; 2)

log P=—2; 3)log P=—1.5; 4) log P=~1; 5)log P=~—0,8;
6) log P=—0,6; 7) log P=—04; 8) log P=—0,2; 9)logP=
0; 10) log P=10,2; 11) log P=04; 12) log P = 0.6; 13) log
P = oo, )

same order of magnitude as that of the fluid. Inthe general case, such problems must be considered as
coupled, where the energy equations in the fluid and solid are solved simultaneously using the velocity distri-
bution in the flowing film with the temperatures and thermal fluxes being assumed equal at the interphase
boundary, i.e., using boundary conditions of the fourth kind [1-3].

Such formulations of the problems were discussed in a number of papers both as internal and external
problems [5,6]. Analytic methods were also proposed recently for solution of the coupled problems [7, 8].

In this paper, a numerical algorithm is proposed for solution of the coupled problem of convective heat
transfer. A fluid film flows gravitationally along the surface of a vertical, infinitely wide plate of thickness b
and length I, We denote the thickness of the flowing laminar fluid film by h. We choose a Cartesian coordinate
system such that the x axis coincides with the interface with x = 0 at the upper end of the plate and x = at the
lower end. At the outer side of the plate (y = —b) and also on the free surface of the film {y = h), known tem-
perature profiles ¥,and ¥ are assigned, respectively. Inthe general case, the energy equations and boundary
conditions in the selected coordinate system have the form

1( y\2\ ot o\
3 (i—_- 4 )4= (_...L)
Ul 2(h) ax 1\ oy

@)
el
L =V,(x) for y="n; t,=Y,(x) for y=—b; @)
=@ (9 ta=@(y) for =0, t,=0, for x=1;
L (%) = ty(x), A 9 _ gt—"' for y =0. , (3)

dy 2 dy

We investigate the solution of the problem (1)-(3) under simplified boundary conditions where ¥ =¢; =@, =t, =
const, ®, =t;, and the function ¥,(x) varies linearly fromtyjat x =0totyat x =1, i.e., ¥(x) =t ;+ ¢ — ty)x/
l)o .

These simplifications, without changing the generality of the numerical realization of the solution for the
problem of coupled convective heat transfer, can correspond to heating (cooling) of the fluid film or to vapor
condensation on the solid surface with subsequent flow in film form if the effect of a change in the thickness of
the latter on heat transfer can be neglected.

We convert {o the dimensionless variables

T1=—“—‘t1—to M= _'-!'/"9

t,—t, h
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Fig. 2. Dependence of dimensionless tem~-
perature at the phase interface on the dimen-
sionless length x/I for log P = 0 and various
values of the parameter n: 1) n=0.1; 2)

n =0J16; 3) n =0.25; 4) n =04; 5)n =
0.63; 6) w =1,0; 7) »n =1.6; 8} n =2,5; 9)
®n =4.0; 10) ® =6.3; 11) n =10.0; 12) »n =

ml

in the liquid phase and define the corresponding variables in the solid phase in the form

ty—1,
t,—1t,

2

In addition, we introduce the dimensionless length z = x/I along the x axis. After introduction of the dimen-
sionless variables, we rewrite the problem (1)-(3) in the following manner:

2
S(m——l—n?) oM _p T,

2 0z on’:

0T 0°T @
2 S 22 = 0;

02 ons

T,=0for 1,=0; Ty=12 for M, =0;
(5)
T,=T,=0 for 2=0; Ty=1foxr z=1

-7, O _, 0T

on, on,

for y=my=1, (6)

where P, S, and ® are dimensionless parameters. For numerical solution of this problem by the mesh meth-
od, we selected a set of points with the coordinates n; = 1/2 + m)d, z = 1/2 +n)d, wheren, m=~-1, ..., M
andd =1/M, i =1, 2, The derivatives in Eqs. @) were replaced by central differences using a four-point
implicit scheme. The resultant difference analog was solved by the sweep method for parabolic equations and
by the vector sweep method for elliptic equations. To better approximate the boundary conditions in the fluid
and gas phases, two fictitious points, (—h/2, 1 +h/2), falling outside the segment [0, 1], were introduced for
the variable . The temperature at the interface between the fluid film and the solid wall was calculated as
the mean value of the temperatures at the points M —~ 1 and M:

)= Tim+Tiu-1)2=(Tom+ Tomu-1)/2, )

where the second subscript in the temperature notation corresponds to the labelling of the point. One of the
basic difficulties in the solution of the coupled problems lies in the resolution of boundary conditions of the
fourth kind, i.e.,.the:conditions for coupling parabolic-equations with elliptic equations. There are a number
of practical methods for solving such problems [3,7,8]. Inthis report, we propose to accomplish this in the
following way. '

We express the temperature £(z) at the interface through the temperatures at the poinfte M — 2, M — 1,
and M:
—~Tim—2— 9T+ 18Tyt — %T oy 4 18To yy_y — 9T 5 y
8 -+ 8x» ’

f@) = (8
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In writing down Eq. (8), the coupling conditions (6) were used where the derivatives were replaced by differ-
ence analogs, which, for example, have the form

AT /01, = (T m—1 + 9T 1.u— 18T 1 —1 — 8f)/(12h) + O (h®)

for the liquid phase. Since this problem is solved by an iteration method, the temperature at the phase inter-
face is assigned arbitrarily in the first iteration. Let the temperature at the interface be fj(z) after the i-th
iteration, Adjustment factors, and consequently the temperature fields, are determined by means of Eq. (7)
and the boundary conditions (5) and (6). A new temperature at the interface, i.e., the function fj +,(z), is de-
termined through Eq. (8) from the temperature fields found for the fluid film and solid, respectively, The
calculation is considered finished if the inequality Ifj +4(z) — fi(z)l < 0.05 is satisfield.

The proposed numerical algorithm was used to solve the problem (4)-(6) ona BEsM-6 computer, Com-
puting time for a single variant and a step d = 0.1 was of the order of one minute.

We define the dimensionless Nusselt numbers for the first and second phases in the following manner:
1

oT, oT,

1
I= (g (t,—t,) /) V dz = (A, (t; — 1) 1/b) V dz. 9
Joony g On,
0 0
1
" T, ° T, . :
Between Nuy = ( dz and Nu, = dz there is the relation
. 07}1 0 anz
Nu, = =xNu,. 10)

In the general case, the solution of the problem (4)-(6) depends on the three independent parameters S, P, and
®. However, the effect of S can be neglected if the inequality S > 1 is satisfied [for actual tubing of length I
meters, b=6-10" mand S =(Z -+103/6)% > 1 in order of magnitude, where I and 6 are of the order of one].
Consequently, the solution of the problem (4)-(6) depends on the two parameters p and « under actual geometric
dimensions.

Calculated results for the dimensionless number Nu, as a function of ® are shown in Fig. 1 for various
values of the parameter P. For any fixed value of the parameter P there exist numbers wpmip and % pyax such
that the relation

Ny, (%) = »/2 199)

is valid when the inequality ® = Wy i, is satisfied. Graphically, this means that the curves Ny (»), for suf-

ficiently small n, practically coincide with the limiting curve 1 in Fig. 1 for which log P = —» (we limit our-
selves to 10% accuracy in the following)., Then the surface temperature Tg(z) = 6 at any point on the interface.
The physical significance of Eq. (11) is clear from the definitions (9) and (10); when Tg = 0, the equality 8T,/

a1, = z is valid and therefore
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Nigy (%) = % or Ny = 32—{— . 12)

Equation (12) means that the resistance to heat transfer is totally concentrated in the solid phase.

At large values of n, the function Nu; () tends toalimiting value and differs from it by less than 10%
when 1 = nmgx. Inthis case, the temperature at the phase interface agrees with the assigned temperature
at the outside of the wall. Resistance to heat transfer is concentrated in the fluid and the problem can only be
solved in the film under the boundary condition Tg(z) = ¥,. The case ¥, = z is discussed here, It is obvious
that the properties indicated above will also be valid for an arbitrary function ¥,(z). Calculations of the func-~
tion Tg(z) for a number of values of % inthe interval (X min, ®max) are shown in Fig. 2 for log P =0,

Values of “min and nyngx can be obtained from Fig. 3 which is a plot of the (X —7Y) plane where X =
logn and Y = log P with Xmin and Xpmgax being approximated in the following manner:

Xpn=—08, X . .=1for IgP>0,
(13)

igp

Xy = —08—EE, leP

max:‘l——3—— for ]gP<O.
As is clear from Fig. 1, inthe region of the X —Y plane where log P = 0,6, the functions Nuy (#) corresponding
to different P cease to depend on the parameter P and practically concide with the limiting curve 13 for which

log P =, When log P = =, the film temperature for any value of z is

Ty(z, M) =0 Ts(2), where Ts(2) = ] ;xz. (14)
Substituting the distribution (14) into Eq. (9), the analytic relation
1 ®
N = — 1
1, (%) ) <1+%) (15)

can be obtained for the Nusselt number for the limiting curve 13, For small values of P, there is a thin ther-
mal boundary layer 3V Pz < 1 in the neighborhood of the solid wall. Inthis case, one can show that the equa-
tions

Ts(z) = (a%z ;/Pz)/(] + an ;/ Pz),
ase)
Nu, () = F(x y/P)Y/P,

where o =1 as shown by calculation, are valid. Consequently, if one plots the quantity pt/ 3Nu1 on the ordinate
and the quantity » P!/30on the abscissa, one merely need know the function F (« p!/3) in order to obtain a solu-
tion, It is shown in Fig. 4 (curve 2). The equality p/3Nu, ~ P/ 3%/ 2, which is equivalent to Eq. (11), is
satisfied when log(n p'/% = —0.8. The function P*/3Nu, — 0.6 when log(® P!/% = 1. As shown by calculated
results, Eq. (16) is valid everywhere when log P = 0, Consequently, when log P = 0, the limiting points Xmin
and Xmgx in the X —Y plane must be located on the lines X = ~0.8—Y/3 and X =1 —7Y/3 as is evident from
Eq. (13) and Fig. 3.

Since the solution of the problem ¢)-(6) for log P = 0 is self-similar as sh.own in Fig. 4 and the maxi-
mum difference between curves in Fig. 1 for log P = 0 is 20%, the dimensionless Nusselt function is approxi-
mated within 10% for any » and P by the following equations:

711



\

for 1gP>0,

a7
u}/P )(3 ,—) for lgP<0.
1+2y/ PV P

0.5

o]0
=

We make some estimates of the parameters Pand % in order.to see what regionof the X —Y plane. (Fig.
3) corresponds to.actual values of the Reynolds number.

Film motion: can be:considered-laminar if Re < 400 and then film thickness is determined by the Nusselt
formula h = 1,450 Re) Y %, where ® = /g)i/ 3 [9]. The thermophysical characteristics of water and organic
fluids are constant over a broad range of temperatures (180°C >t > 20°C) and are, in order of magnitude,

Ay = 0.4N/(sec *deg), Cp =~ 4000 J/ (kg -deg), and @; = 10" " m%/sec. Only viscosity undergoes a marked varia-
tion with temperature with ® varying from 7-107° m at 20°C to 10~> m at 180°C. For irrigation channels with
dimensions I > 0.l m, b=6°10"2 m (6 > 1), the order of magnitude of Pis P~ (1021/®)/(Re)4/3 P(0.05-10%).
The value of the second parameter ® also varies over a broad range and can take on any value in the interval
(Xmin,» ®max) and outside it, For example, where ® ~ &@ - 105)(Re)’~ 3/6 for metal tubing with Ay ~ 40 N/ (sec *
deg), n ~ 3@+ 103)(Re1/3/6 for suchmaterialsas Teflon and vinyl with A, ~ 0.2 N/(sec "deg). Thus, it is
often necessary to consider the thermal interaction of the phases even for laminar motion in the film flow

Re < 400).

NOTATION

ty, ty, temperatures; T, T,, dimensionless temperatures; A, A,, coefficients of thermal conductivity;
X, y, spatial coordinates; 7, plate length; b, plate thickness; h, film thickness; 9y, n,, z = x/1, dimension-
less coordinates; ay, coefficient of thermal diffusivity; vy, kinematic viscosity; g, gravitational acceleration;
U, mean fluid velocity; dimensionless parameters: P=1/hPe), S = (I/b)?, % = (Agh)/ (A4b)s Nuy, Nuy, Nus-
1

selt numbers; q, irrigation density; Re = g/v;, Reynolds number; Pe = q/a;, Peclet number; 1= A, S ®ty/

Jy)dx, heat flux across phase interface. Indices: 1, liquid phase; 2, solid phase, ’
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